373 research outputs found

    Effects of errors in the solar radius on helioseismic inferences

    Full text link
    Frequencies of intermediate-degree f-modes of the Sun seem to indicate that the solar radius is smaller than what is normally used in constructing solar models. We investigate the possible consequences of an error in radius on results for solar structure obtained using helioseismic inversions. It is shown that solar sound speed will be overestimated if oscillation frequencies are inverted using reference models with a larger radius. Using solar models with radius of 695.78 Mm and new data sets, the base of the solar convection zone is estimated to be at radial distance of 0.7135±0.00050.7135\pm 0.0005 of the solar radius. The helium abundance in the convection zone as determined using models with OPAL equation of state is 0.248±0.0010.248\pm 0.001, where the errors reflect the estimated systematic errors in the calculation, the statistical errors being much smaller. Assuming that the OPAL opacities used in the construction of the solar models are correct, the surface Z/XZ/X is estimated to be 0.0245±0.00060.0245\pm 0.0006.Comment: 10 pages, plain TeX, MNRAS macro file include

    Global Seismology of the Sun

    Full text link
    The seismic study of the Sun and other stars offers a unique window into the interior of these stars. Thanks to helioseismology, we know the structure of the Sun to admirable precision. In fact, our knowledge is good enough to use the Sun as a laboratory. We have also been able to study the dynamics of the Sun in great detail. Helioseismic data also allow us to probe the changes that take place in the Sun as solar activity waxes and wanes. The seismic study of stars other than the Sun is a fairly new endeavour, but we are making great strides in this field. In this review I discuss some of the techniques used in helioseismic analyses and the results obtained using those techniques. In this review I focus on results obtained with global helioseismology, i.e., the study of the Sun using its normal modes of oscillation. I also briefly touch upon asteroseismology, the seismic study of stars other than the Sun, and discuss how seismic data of others stars are interpreted.Comment: To appear in Living Reviews of Solar Physic

    Temporal variations of the rotation rate in the solar interior

    Get PDF
    The temporal variations of the rotation rate in the solar interior are studied using frequency splittings from Global Oscillations Network Group (GONG) data obtained during the period 1995-99. We find alternating latitudinal bands of faster and slower rotation which appear to move towards the equator with time - similar to the torsional oscillations seen at the solar surface. This flow pattern appears to persist to a depth of about 0.1R_sun and in this region its magnitude is well correlated with solar activity indices. We do not find any periodic or systematic changes in the rotation rate near the base of the convection zone.Comment: To appear in Ap

    Constraining solar abundances using helioseismology

    Get PDF
    Recent analyses of solar photospheric abundances suggest that the oxygen abundance in the solar atmosphere needs to be revised downwards. In this study we investigate the consequence of this revision on helioseismic analyses of the depth of the solar convection zone and the helium abundance in the solar envelope and find no significant effect. We also find that the revised abundances along with the current OPAL opacity tables are not consistent with seismic data. A significant upward revision of the opacity tables is required to make solar models with lower oxygen abundance consistent with seismic observations.Comment: To appear in ApJ Letters. 12 pages (that include 4 figures

    Solar cycle variations of large scale flows in the Sun

    Get PDF
    Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.Comment: To appear in Solar Physic

    Isochrones of M67 with an Expanded Set of Parameters

    Full text link
    We create isochrones of M67 using the Yale Rotating Stellar Evolution Code. In addition to metallicity, parameters that are traditionally held fixed, such as the mixing length parameter and initial helium abundance, also vary. The amount of convective overshoot is also changed in different sets of isochrones. Models are constructed both with and without diffusion. From the resulting isochrones that fit the cluster, the age range is between 3.6 and 4.8 Gyr and the distance is between 755 and 868 pc. We also confirm Michaud et al. (2004) claim that M67 can be fit without overshoot if diffusion is included.Comment: 4 pages, 3 figures, to appear in the proceedings of the joint TASC2/KASC9/SPACEINN/HELAS8 conference "Seismology of the Sun and the Distant Stars 2016
    corecore